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LMI

Executive Summary

THE NATURE OF THE AIRCRAFT COMPONENT FAILURE PROCESS:
A WORKING NOTE

- The physics of component failures is normally assumed to follow a Poisson
process. However, many studies have shown that the component demands in the
U.S. Air Force supply system have a variance-to-mean ratio (VMR) much higher
than 1.0, the VMR of a Poisson process. ThLis apparent contradiction is resolved by
modeling component failures as a Poisson process whose demand rate is not fixed,
but rather is itself a stochastic process, wandering over time as a result of various
causes such as weather, flying intensity, reliability growth, and, presumably, other
unknown factors.

Component and program data for the F-16 and A-10 aircraft show that demand
over short time periods is Poisson. This is even more apparent when demands per
flying hour are used instead of demands per day. However, when demands are
aggregated over longer periods of time or more flying hours, the VMR increases. A
gamma-Poisson model for future demands as a function of past observations fits the
measured data. We call this process "planetary Poisson" to distinguish it from the
general class of nonstationary Poisson models. x,
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CHAPTER I

INTRODUCTION

BACKGROUND

Models of logistics supply/resupply performance are essential tools in the

budgeting and procurement decisions made by the managers of large logistics
systems. The Logistics Management Institute (LMI) Aircraft Availability Model
(AAM) is used by Headquarters, U.S. Air Force, in the evaluation and justification of
reparable spares funding requirements in budget submissions, while the Air Force
Logistics Command (AFLC) is incorporating a version of the AAM into the require-

ments determination process. Other supply models, such as SESAME 1, ACIM2, and
Dyna-METRIC3 are widely used by the Army, Navy, and Air Force in spares

budgeting and procurement.

To project supply performance accurately, such models need data on the

variability of component demand as well as on the mean demand rate. Typically,

this information is given in terms of the variance-to-mean ratio (VMR) of the
demand distribution. It is critical to estimating the need for and effectiveness of
various levels of safety stock.

Studies have shown that Air Force statistics on the component demand process
are different from those of a Poisson process with a fixed mean [1, 2]. While a
Poisson process with a fixed mean has a VMR of 1, observed VMRs often exceed 5.
Furthermore, the observed VMR is normally higher for high-demand components

than for low-demand ones, which suggests an underlying process that varies the
demand rate by some percentage. For example, suppose that the demand process is
Poisson but that the instantaneous demand rate at time t [X(t)] has a seasonal

dependency, with the demand rate higher in the winter. In such a case, the number
of events in the time interval T from T1 to T2 is Poisson-distributed with mean equal

ISESAME - Selected Essential Item Stockage for Availability Method.

2ACIM - Availability Centered Inventory Model.

3 Dyna-METRIC - Dynamic Multi-Echelon Technique for Recoverable Item Control.



to the integral of X(t)dt from T1 to T 2. But suppose that we do not know X(t) or even

that there is such a function describing the mean. Observation of demand over a

long period would allow us to develop a histogram of demand. Not knowing of any

functional relationship between the demand rate and time, we might assume that

the number of demands in the time period T is Poisson-distributed with an unknown

mean whose probability distribution is specified by our histogram of observations.

For simplicity, assume that our histogram leads us to believe that our

observation of the "true" mean follows a gamma distribution with mean, M, and a

standard deviation of 10 percent of the mean. That distribution is given by

e- F a -t [Eq. 1-l

where,

* The mean M =al.

* The variance = a3 2.

Since the standard deviation (PV'a) is 0.1M, a = 100.

Our model then is a demand process that is Poisson with a mean conditioned on

a gamma prior distribution. The number of demands in a time period, T, has a

negative binomial distribution with mean MT and VMR 1 + MT/a = 1 + MT/100.

This trend of increasing VMR with increasing demands is characteristic of a

Poisson process with a gamma prior distribution whose standard deviation is a fixed

percentage of the mean. This trend is also typical of observed aircraft component

failure processes. Thus, we believe that the demand process can be usefully modeled

as a Poisson process w hose mean varies over time within a gamma prior distribution.

THE PLANETARY POISSON PROCESS

The Poisson distribution, named for Simeon Denis Poisson (1781-1840), a

French mathematician known for his work on the application of mathematics to

physics, is defined as:

e - Mn

p(n) = n=0, 1.2 [Eq. 1-21

where M is the mean.
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The first military application of the Poisson distribution was in modeling death

by horsekick in the Prussian army. The Poisson distribution received little attention

until 1907 when W. S. Gosset ("Student") showed that the sampling error in

counting yeast cells with a hemocytometer was Poisson-distributed and provided a

theoretical argument to support that model. Now, because of its close relationship to

many physical phenomena, the Poisson distribution is widely used.

A stochastic process is said to be Poisson with intensity X if it generates a

sequence of events over time such that for any time interval (t,t + At) the probability

distribution for the number of events in the interval is Poisson with mean .kAt. The

necessary and sufficient conditions for this to occur, which are often used as the

definition of a Poisson process, are:

* The number of events in nonoverlapping intervals is independent.

* As At approaches zero, the probability of one event in [t,t + At] approaches
xAt.

* As At approaches zero, the probability of more than one event in [t,t+ At]
approaches zero faster than At (i.e., p(n > 1/At approaches 0).

The instantaneous probability of an event is AAt. The key to the process being

Poisson is that this instantaneous probability is always the same irrespective of the

recent occurrence or nonoccurrence of events. This process is stationary; that is, the

probability distribution of the number of demands in [t,t + At] is a function only of

At,

The definition can be generalized to the case where the intensity is not a

constant. If the intensity is a function of time, (t), we interpret X(t)At as the

instantaneous probability of an event. If A is the integral of X(t)dt from T1 to T2 ,

then the number of events in the interval T1 to T2 is Poisson-distributed with mean

A. This dynamic Poisson process is at the heart of the pipeline calculations in

wartime models such as the Aircraft Sustainability Model [3] and Dyna-

METRIC [4].

However, even in a peacetime/steady-state environment, the intensity may not

be constant. The intensity could have a seasonal dependency or could be higher in

the daytime than at night. Further generalizing the concept of fluctuating intensity

3



to include an intensity that is a stochastic process yields a "planetary Poisson"

process.

In the logistics application of interest here - the demand process for an air-
craft component - the intensity corresponds to the instantaneous component

demand or failure rate. Because the demand rate is affected by such unpredictable

factors as weather, the mood and health of the pilots, enemy action, or any number of

imaginable influences, on any given day the actual instantaneous probability of an

event (i.e., a failure) will not be known with certainty. Thus, the planetary Poisson
process is different from a dynamic Poisson process, in which, even though the

demand rate is not constant, it is known with certainty at all times.

The planetary Poisson also differs from the commonly used Poisson process

with a prior distribution on the intensity [5]. In that case, the intensity is a random

variable but is time invariant. The probability distribution (the prior) on 21

represents our lack of knowledge about what the actual demand rate is, but

whatever it is, it is not a function of time.

It is essential to make a clear distinction between this prior distribution, which

represents our lack of knowledge about the mean of a stationary Poisson process, and

a distribution on a randomly varying mean. In computing the VMR of a resupply

pipeline for use in a model, we must separately consider both the natural, observable

VMR and the additional variance attributable to our uncertainty (i.e., ignorance)

about the true mean of the pipeline. These are two very different sources of variance,

and they must not be confused.

By keeping these two types of variance (which we call natural and forecasting

variance) separate, we can better model the demand process. Furthermore, only

when the natural variance is well understood can we build the correct Bayesian

formulas for updating total mean and variance.

Proper forecasting depends on the nature of what you are forecasting. An

excellent procedure for forecasting a standard Poisson process may be very poor for

forecasting a planetary Poisson process. Past studies of forecasting failures have

focused on the total variance rather than on the separate natural and forecasting

components. This paper focuses only on computing the natural variance of a
planetary Poisson process. Once that has been accomplished, we will be in a position

4P



to rethink the way we have forecast pipeline means and variance as a function of

engineering estimates and observed data.

The natural VMR of a pipeline will depend on the distribution of ,(t) and on the

autocorrelation function of O(t). The natural VMR of a pipeline as a function of the
pipeline length (T) and the components' overall average demand rate can be

computed directly from the data, but it is also of interest to know the distribution of
(t) and its autocorrelation function for use in future demand forecasting studies.

For now, we will treat X(t) as stationary; that is, we will assume that the
probability distribution for X(t) does not change from day to day. Presumably, for

some components, the failure rates will actually have the seasonal dependency
referred to earlier, but we will not treat that case here.

5 1



CHAPTER 2

ANALYSIS

We wish to find a mathematical formulation for the demand process as it

evolves over time that is consistent with the "physics" and what we have already
found in our studies on demand prediction [1, 2, 61. The fundamental question is
whether historical demand can be described as Poisson over short periods of time or
whether some other demand model is required. Our objective is to describe historical

demand patterns; the more difficult problem of demand prediction will be addressed

in a later report.

We need to be able to represent the demand process over arbitrary periods of

time because our inventory models require demand over repair/resupply lead-times

of various lengths.

Data for the analysis come from a variety of sources. The characteristics are
quite different, and thus the information that can be obtained is also different. For

example, we have:

* A-10 aircraft daily demand data from England Air Force Base (AFB),
Louisiana, for a 2-year period. Those data include a number of fairly high
demand items, which is useful for analysis. While the overall flying
program was fairly stable, we do not have the flying-hour data for each day.
Thus, some microanalyses relating demand to program cannot be
performed.

* F-16 aircraft daily demand and flying-hour data from Hill AFB, Utah;
MacDill AFB, Florida; and Nellis AFB, Nevada. We have flying hours by
day, and we can distinguish line replaceable units (LRUs) from shop
replaceable units (SRUs). However, the data for a given base are only for
about a year, and most items have fairly low demand. For that reason we
have analyzed total demand for LRUs, SRUs, or combined units. We also
have some monthly aggregate data for longer periods of time - on the order
of 24 years.

" F-16 and A-10 quarterly demand data from the Recoverable Consumption
Item Requirements System (D041) for 4 years. These data have program
element information by item.
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EMPIRICAL FINDINGS

Data Set 3 [1] was used to find that the variance-to-mean ratio of recoverable

item demand over a year is best described by:

VMR = I + 0.14M ° 5  I-yearperiod [Eq. 2-11

where M is the estimate of mean annual demand. This relationship is similar to the

one developed in an earlier study [21, also based on D041 data, for 1,020 items on

various weapon systems. Over a 2-year period, some evidence indicated that the

relationship should be:

VMR = 1 + 0.355M °.55  2-year period [Eq. 2-21

This relationship should be applied to demand/flying hour or demand/quarter

depending on which was more stable during the first 2-year period used as history.

For about half of the items, demand/quarter was more stable or demand/flying hour

could not be computed because of missing data.

Analyses of Data Sets 1 and 3 [1, 2] (and the earlier 1,020 items) show that

demand in adjoining time periods is more highly correlated and the correlation

decreases smoothly as the interval of time between the periods increases. An

example of a process that is consistent with these data would be a Poisson process

with a time-varying mean. The problem is to find a probabilistic mechanism to

describe the variation of the mean. Even though we believe the wandering mean is

consistent with the data, we have been unable to predict the trend (except in the

sense that exponential smoothing, the recommended technique for predicting the

mean, gives more weight to more recent data).

THEORETICAL CONSIDERATIONS

The primary reason that we believe a Poisson process with wandering mean is

a good model is that the Poisson is the most general "independent increments" model

in which demands do not occur in clumps (the compound Poisson leads to clusters of

demand, but they are rarely observed when transaction data are analyzed over short

time periods such as a day). By "independent increments" we mean that future

demand is independent of the times at which earlier demands occurred.
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The simplest type of wandering Poisson is a Markov-type process, in which the

knowledge of the demand rate today contains all the information about the process

(i.e., if we know the true mean last week as well, it adds no information). However,

the analysis of Data Sets 1 and 3 refutes this simple model.

* Exponential smoothing with a constant of 1.0 would be the appropriate
technique if the process were Markov. However, exponential smoothing
with a constant of 0.4 applied to quarterly data was better on every data
set [1, 2].

• If the correlation between demand in Period 1 and Period 2 is r and the
correlation between demand in Period 2 and Period 3 is r, then in a Markov
process the correlation between demand in Period 1 and Period 3 should be
about r 2 . In our previous study [1], the correlations between demand in
adjoining quarters for the F-16 were 0.201 and separated by a quarter were
0.085 - much higher than the value of 0.04 = 0.201 X 0.201. Similarly for
the A-10, the correlations were 0.207 and 0.095, respectively. Also, for
biweekly data, the values were 0.034 and 0.027, respectively.

Another model of a Poisson process with time-varying mean that is similar to

the Markovian model is a process in which the true mean demand has a probability

distribution (e.g., gamma). Demand is assumed to be Poisson with that (unknown)

mean. Then after some time has elapsed, that true mean demand is used as the

mean of a new probability distribution of true mean demand. Derr and is again

Poisson for some period of time, and the branching continues.

Three such models are discussed in the Appendix, the last of which appears to

be a useful model for a planetary Poisson process.

Statistical Tests

To analyze data statistically, we must hypothesize some probability model and

invoke statistical tests to evaluate the adequacy of the probability model. As

described earlier, a Poisson process is the most appealing physical model, although

the assumption of a constant mean is not supported. How do we determine that the

constant-mean Poisson does not fit?

Chi-Square Goodness of Fit

The best-known goodness-of-fit test is the chi-square. To test whether some

data are Poisson with a constant mean, we compute the average demand per period

9



and then compare the number of periods with 0, 1, 2, ... N observed demands with

the theoretical probabilities from a Poisson distribution with that mean.

Let

O(i) = The number of periods with i demands observed.

E(i) = The number of periods with i demands expected.

Then:

N 0D i- EM?)]

CHI = 'V [Eq. 2-31
,0 E(i)

has a chi-square distribution with N degrees of freedom. If the computed value

exceeds the 95-percent level (i.e., if there is less than a 5-percpnt probability that

such a result could occur by chance if the distribution were really Poisson), the
Poisson hypothesis is rejected.

One problem with using this test is that the expected number of observations in

each of the (N + 1) cells above should have an expected value of 5 or more. This

means that the tail probabilities for large values of i must be combined, but those
values are the most likely ones to provide evidence that the data are not Poisson.

A much more sensitive test of goodness-of-fit for the Poisson is known as the

Poisson index -f dispersion [7]. Since no combinations of data are required as above,

a few very large observations will tend to result in rejection of the Poisson

hypothesis. Let

X = The average observed demand/period.

X(j) = The number of demands observed in periodj.

M = The number of periods.

Then the following statistic is distributed as chi-square with M- 1 degrees of

freedom.

M ) 12

CHI = [Eq. 2.41
j=L

t0



Since M is much larger than N (at least 5 times as large), the test is much more

sensitive. That is, a set of data not rejectet by the chi-square test of Equation 2-3

may be rejected by the more sensitive test of Equation 2-4.

Essentially this test adds up VMRs in each period. The VMR for a Poisson is 1,

so it will reject a set of data if chi in Equation 2-4 is much greater than the number of

periods, M.

EMPIRICAL EVIDENCE

Our empirical data analyses consistently show a significant autocorrelation

between demand in neighboring periods. Furthermore, the assumption of a constant

mean Poisson over several periods is rejected by both the tests of Equations 2-3 and

2-4. Because the Poisson process is the most general "independent increments"

process in which demand in nonoverlapping time periods is independent (and does

not occur in clusters), we would like to retain that model. The obvious solution is to
look for processes that are Poisson but over shorter periods of time.

That solution requires us to develop a new goodness-of-fit test for a time-
varying Poisson mean. Equation 2-3 is no help because we do not have enough

periods (because of the restriction on the number of observations per cell to at least
five). Equation 2-4 is the obvious candidate for modification. Suppose that we com-

pute the mean for each group of three periods (i.e., 1 + 2 + 3, 2 + 3 + 4, 3 + 4 + 5, ... )
and take as observed values the value from the middle period [i.e., X(2), X(3),

X(4),.... ]. More generally, let K periods be used, where K is odd. Then we assert

that the following quantity should be distributed approximately as chi-square with

(M-K + 1)(K - 1)/K degrees of freedom:

M-(K- 1)/2 [X(j)- X(j)1 2

CHI = 'V [Eq. 2-5]
j =(K + 1)/2

To justify the number of degrees of freedom, recall that for K periods and a

constant mean, we would subtract 1 degree of freedom in Equation 2-4 for estimating

the mean or (1/K) degrees of freedom for each term. This leaves (K - 1)/K degrees of

freedom for each term added in Equation 2-5, and there are M - K + 1 terms.

At the other extreme, when K = 1, the chi-square test should be meaningless

since nothing is being tested. The value of the test statistic in Equation 2-5 is zero,

11



but so are the degrees of freedom. At this time, we will not attempt a formal proof

that this statistic is chi-squared with the stated degrees of freedom.

The individual terms used in computing the chi-square statistic are identical to

those used in estimating the VMR when the mean is changing. The latter is our

primary interest, and the chi-square test is used only to determine whether the data

could have come from a Poisson distribution.

ANALYSIS OF A-1 0 DATA AS A POISSON PROCESS WITH A CONSTANT MEAN

In Tables 2-1, 2-2, and 2-3, we provide summaries of the analyses on 14 high-

demand A-10 items with 2 years of transaction data from England AFB. We begin
by considering the possibility that a constant value for mean demand on each of the

14 items is adequate over a 2-year period. As noted earlier, we do not have flying

hours by day, but the overall pattern of flying hours was fairly stable. Table 2-1

shows the VMR for the group of 14 items using a constant mean for each item and

time periods of various lengths.

For periods longer than a day, several different starting points are selected for

combining days into a period. For example, when the period is 7 days long, seven

computations are made and the results averaged. The periods for the first

computation are composed of days 1-7, 8-14, 15-21, etc; for the second

computation, days 2-8, 9-15, 16- 22, etc. Any partial period at the end of the data

series is excluded to remove extraneous variance.

Table 2-1 demonstrates that VMRs tend to increase as the number of days in

the period increases, which shows that there is positive autocorrelation between data
in neighboring time periods. The one surprise is that the effect of weekends does not

make the VMRs for 7 days and 14 days smaller. Although the data in Table 2-1 are

aggregated over all 14 items, individual item results even for periods of 1 day show

sample VMRs that all exceed 1 (ranging from 1.12 to 4.89).

ANALYSIS OF A-10 DATA AS A PLANETARY POISSON PROCESS

Now that we have established the inadequacy of a constant mean assumption,
we turn to an analysis of time-varying means. The VMR is the sum of terms in

Equation 2-5 multiplied by K/(K- 1) to give an unbiased statistic and divided by the

12



TABLE 2-1

A-10 VMRs AS A FUNCTION OF NUMBER OF DAYS IN A PERIOD

Number Number
of days VMR of days VMR

in a period in a period

1 1.61 21 2.37

2 1.72 28 2.50

3 1.77 35 2.63

4 1.77 42 2.76

5 1.77 49 2.89

6 1.80 56 2.99

7 1.86 63 3.08

8 1.93 70 3.18

9 2.01 77 3.25

10 2.07 84 3.29

11 2.11 91 3.35

12 2.13 98 3.42

13 2.16 105 3.47

14 2.18

15 2.22

number of terms. We note that the VMR, which would be 1 for a Poisson, increases

consistently with K, the number of weeks in Table 2-2.

To eliminate any weekend effect, we aggregated the data into 7-day periods

and computed VMRs as a function of the number of weeks used in computing mean

demand to obtain Table 2-3. Note that the values for 7 days in Table 2-2 are the first

four entries in Table 2-3.

The number of degrees of freedom starts to increase with K because of the

factor (K- 1)/K and then decreases because of the factor for the number of periods,

M- K + 1. When the number of degrees of freedom, D, is more than 30, the chi-

square statistic is normally distributed with mean D and variance 2D. The number

of standard normal deviates is used for significance testing of the Poisson hypothesis.

A 95-percent level of significance and a one-sided critical region is 1.64 standard

deviations. The number of standard deviations for the group of 14 items in Table 2-3

13
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TABLE 2-2

A-10 VMRs AS A FUNCTION OF NUMBER OF DAYS IN A PERIOD
AND NUMBER OF PERIODS, K. USED FOR MEAN

Number Variance/Mean
of days

ina period K = 3 K=5 K=7 K=9

1 1.13 1.17 1.23 1.29

2 1.26 1.38 1.27 1.25

3 1.41 1.25 1.33 1.39

4 1.33 1.28 1.35 1.40

5 1.22 1.35 1.36 1.40

6 1.22 1.31 1.40 1.46

7 1.26 1.36 1.46 1.50

8 1.31 1.43 1.52 1.54

TABLE 2-3

A-10 VMRs AS A FUNCTION OF NUMBER OF WEEKS USED IN COMPUTING MEAN DEMAND

Number NumberKVMR ~ fFKVMR oD
of OF of OF

3 1.26 818 15 1.56 1,083

5 1.36 1,011 17 1.59 1,065

7 1.46 1,072 19 1.63 1,046

9 1.50 1,091 21 1.68 1,025

11 1.50 1,093 31 1.82 906

13 1.51 1,086 41 2.00 777

Note: DF degrees of freedom.

exceeds 5.0 at each value of K. Therefore, the Poisson hypothesis is strongly rejected

everywhere.

However, on an individual item basis, 9 of the 14 items pass the chi-square test

of significance for the Poisson (values less than 1.64 standard deviations) at K = 3;

this drops to 5 of 14 at K=5. Furthermore, the planetary Poisson model only

14



predicts that the trend as K-1 would be a VMR of 1.0. No claims are made for

particular K> 1. Tables 2-2 and 2-3 are mostly encouraging with respect to the trend

as K- 1. For example, Table 2-3 shows a VMR trending to 1.16 at K = 1.

Nevertheless, these values still fail the test. This is not surprising since we

could not incorporate daily flying-hour data into the A-10 data base. The flying-hour
program does not necessarily "wander slowly" from day to day the way we
hypothesize the failure rate does.

DATA ANALYSIS: F-16 WITH CONSTANT MEAN

Now we repeat the analyses above for the F-16 with one important difference:
we have the daily flying hours as well as daily demands over 58 weeks. Table 2-4

shows the results on VMR of various period lengths in days for the assumption of
constant demand by item (actually 16 Work Unit Code aggregations). Those results

confirm the results shown in Table 2-1 for the A-10 although the increase in VMR is

even more dramatic with the F-16 because of the flying-hour program that began low
and increased substantially.

TABLE 2-4

F-16 VMRs AS A FUNCTION OF NUMBER OF DAYS
AND NUMBER OF FLYING HOURS

Number Number
of days VMR of flying hours VMR

in a period in a period

1 2.8 40 1.70

2 3.8 80 2.12
3 4.4 120 2.45

4 4.8 160 2.73

5 5.1 200 3.10

6 5.4 240 3.18

7 5.9 280 3.59
8 6.4 320 3.73
9 7.0 360 3.74

15



The average number of flying hours per day for the 58 weeks was about 40.

Using multiples of 40 as an aggregation criterion, we computed VMRs. The VMRs
on any given line are thus of comparable period length (e.g., 7 days are comparable to

280 flying hours). Thus, flying hours are seen to be better than calendar time for

purposes of aggregation (we examined the possibility that a combination of both

would lead to still lower VMRs, but that did not occur).

One technical note should be added. When aggregating into short periods such

as 40 or 80 flying hours, a period or even several periods are likely to end during a
given day. Since we have only the total flying hours and the total demands for the

day, we must split the demand for the day into the flying-hour periods.

Our first procedure was to say that if the 40 hours was a fraction, P, of the

flying hours for the day, then demand for the period would be estimated as the

fraction P of the demand for the day. However, it is clear that this induces artificial

stability into the demands/period for short flying-hour periods. A better procedure,

employed in Tables 2-4 (and later in Table 2-6), is to use P as the probability that

each demand of the total for the day occurs during a particular flying-hour period.

Thus, the total of a day's demand for a particular flying-hour period has a binomial

distribution.

DATA ANALYSIS: F-16 WITH VARYING MEAN

Table 2-5 is similar to Table 2-2; Table 2-6 differs from those tables in that we

show results for the aggregation over flying hours.

The results in Table 2-6 based on flying hours are clearly better than those in

Table 2-5 based on time. This is not surprising since the flying hours and demand on

the F-16 both increased dramatically during the time period.

In all cases, the VMRs using means computed from three periods are lower

than those computed from five. This is not surprising either, since the former allows

the mean demand to change more rapidly.

Once again, if we ignore the flying-hour data (Table 2-5), even the trend as

K-11 is not encouraging. However, when we use the flying-hour data (Table 2-6), the

trend is good. Figure 2-1 graphs these data, and we can see the trend as K-1.

16



TABLE 2-5

F-16 VMRs AS A FUNCTION OF NUMBER OF DAYS IN A PERIOD
AND NUMBER OF PERIODS, K, USED FOR MEAN

Number Variance/mean
of days

in a period K z 3 K = 5 K = 7 K=9

1 1.53 1.72 1.89 2.08

2 2.13 2.65 2.28 2.14

3 2.90 2.29 2.41 2.52

4 2.69 2.30 2.45 2.50 S
5 2.14 2.47 2.36 2.42

6 2.00 2.21 2.34 2.50

7 2.09 2.25 2.44 2.50

8 2.18 2.38 2.59 2.73

TABLE 2-6

F-16 VMRs AS A FUNCTION OF NUMBER OF FLYING HOURS IN A PERIOD
AND NUMBER OF PERIODS, K, USED FOR MEAN

Number Variance/mean
of flying hours

in a period K=3 K = 5 K=7 K = 9

40 1.10 1.19 1.23 1.25

80 1.30 1.38 1.44 1.51

120 1.40 1.51 1.63 1.64

160 1.51 1.66 1.77 1.80

200 1.62 1.83 1.87 1.97

240 1.61 1.83 1.93 2.00

280 1.92 2.03 2.20 2.23

320 1.93 2.12 2.25 2.29
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CHAPTER 3 -

CONCLUSIONS

* The component failure process in the U.S. Air Force is not Poisson with a
fixed mean demand rate.

" Mean demand rates drift over time. Both sets of data confirm that demane
in neighboring time periods is highly correlated. Thus, the VMRs increase
as the number of days or number of flying hours in a period increase
(Tables 2-1 and 2-4).

* Demand over short periods of time or flying hours is nearly Poisson.
However, for this conclusion to hold, mean demand must be computed over
3- to 5-day time periods (Tables 2-2, 2-5, and 2-6).

* When flying hours change dramatically, as in the F-16 case, it is essential to
compute demand on a per flying-hour basis (Table 2-6).

* The component failure process in the U.S. Air Force can be modeled as a
nonstationary Poisson process whose demand rate is itself a stochastic
process - what we have called a "planetary Poisson" process.
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APPENDIX

GAMMA POISSON MODELS

In this appendix, we examine three alternative Bayesian models in which the
prior distribution of mean demand is assumed to be gamma and the distribution of

demand about that mean is Poisson. Poisson demand is of interest because our work
in the body of the report shows that demand over short time periods tends to be
Poisson. A gamma prior distribution is of interest because it tends to have the right

shape (skewed to the right) and it has mathematical properties that simplify
combination with the Poisson.

Model 1, the simplest model, assumes that demand in each period has the same

gamma prior distribution. Because demand in each period is independent of demand
in other periods, the mean demand is constant and demands in neighboring periods

are uncorrelated. Thus, this model does not conform with our observations of the
real world in which mean demand rates do change and demands in neighboring

quarters have higher correlations.

Model 2 is also well-known. Here the prior distribution is updated with the
observed demand to obtain a new posterior distribution. The Poisson and gamma are

called conjugate distributions because the posterior is also a gamma distribution,
and that simplifies the analysis. As contrasted with Model 1, a dependency exists
between periods. However, the true mean demand is assumed to be constant, and as

the number of periods increases, the variance around the mean decreases to zero.
This result conflicts with our results about a time-varying mean.

The Model 3 is our attempt to represent the changing mean. As in Model 2,
Model 3 has a gamma prior distribution and Poisson demand from which a gamma

posterior can be computed. Instead of using that gamma distribution as the prior for
the second period mean, we modify it. Our gamma prior distribution will use the
same mean as used in Model 2, but we do not allow its variance-to-mean ratio (VMR)
to decrease as in Model 2. Instead, the VMR is held constant.

The rationale for our model is that the prior distribution for mean demand in a
period should be influenced by the most recent demand. However, the VMR does not
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shrink to zero because other influences act on the demand process - mean demand
rates do not stay constant. What we examine below is how the correlational

structure of our model compares with that of our observations.

MODEL 1: SAME GAMMA PRIOR DISTRIBUTION IN EACH PERIOD
AND POISSON DEMAND

A common model that leads to the negative binomial is to assume that the

mean demand for an item over a specified period of time is given by a gamma

distribution and the demands are then generated from a Poisson with that mean.

The gamma distribution is given by

exp( 1 v>O [Eq.A-11
(a- I)!b b

This function is defined for a>O and b>O where the factorial is to be

interpreted as a gamma function for nonintegral values of a. If demand is Poisson
with mean y, p(vly), then the distribution of demand v is obtained by integrating

over y, and the result is negative binomial.

n(v) = -i D) _ v=0,1,2 [Eq. A-21
v! (a -D! \b+1 b

Note that this distribution of demand is the same for every period because it is

assumed that the mean demand is drawn at random from the same gamma prior

distribution each period. Thus, demand is independent from one period to another,
in conflict with our observations.

MODEL 2: ONE GAMMA PRIOR DISTRIBUTION IN FIRST PERIOD
WITH POISSON UPDATING

Now suppose that v demands are observed over the specified, fixed time period.

Under these assumptions, the posterior probability distribution for the mean

demand of the item is still gamma distributed, but the parameters a,b now become

(a + v) and b/(b + 1). If that is used as the prior distribution for the second period, and

the process is allowed to continue over many periods, the gamma distribution

eventually degenerates to a single point and demand becomes Poisson about that

mean.
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MODEL 3: A GAMMA PRIOR DISTRIBUTION IN EACH PERIOD WHOSE MEAN IS
OBTAINED FROM BAYES AND WHOSE VARIANCE/MEAN REMAINS CONSTANT

U

We will consider two periods and denote by v,w the demands observed in

Period 1 and Period 2. The means and variances of these distributions are shown in

Table A-1 to simplify later references. Our primary interest will be in the VMRs and

their behavior as more time elapses.

TABLE A-1

PROBABILITY DISTRIBUTION VALUES

Distribution Mean Variance VMR

Gamma prior - Period 1 ab ab 2  b

N.B. demand (v) - Period 2 ab ab + ab 2  1 + b

Gamma prior - Period 2 (a + v)b/(b + 1) (a + v)b 2/(b + 1) b p

N.B.fv (a + v)b/(b + 1) (a + v)b 1 + b

N.B demand (w) - Period 2 ab ab[1 + b + b2/(b + 1)] 1 + b + b2/(b + 1)

Total demand (v + w) - 2ab ab[2 + 4b + b2/(b + 1)] 1 + 2b + b2/[2(b + 1)]
both periods

Correlation between b/V(b+ 1)2 + b2
vandw

The means and variances for the gamma and negative binomial in Period 1
were noted above and are well-known. The gamma prior distribution for Period 2

has parameters that depend on the observed demands, v, in Period 1. Note that its

variance is b times the mean by our assumptions of Model 3 [under Model 2 the

variance would be the same as the gamma prior distribution for Period 1 with a

replaced by (a+v) and b replaced by b/(b+1) - this is always smaller than the

variance for Model 3 by the factor (b + 1) in the denominator].

Note that the VMRs for every variable are independent of the parameter a.

That is, the VMR depends only on the original VMR of the gamma, b. Note also that

though v and w each have negative binomial distributions, they have different

VMRs. As a result, the distribution of v + w is not negative binomial although we

can still compute a mean and variance.
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Our major interest is the behavior of the VMRs for demand over Period 1,
Period 2, and both periods. Note that, even though the gamma prior distribution
VMR stays constant from one period to the next at b, the VMR for the period demand

increases. Over both periods, it is even larger than over Period 2. This is similar to

the behavior we observe in our real-world data.

Lastly, the correlation between demand in the two periods, v and w, depends

only on b; it increases from 0 to 0.707 as b increases. Thus, by selecting an
appropriate value of b, we can model any desired correlation between periods (see

Table A-2). By comparison, the correlation for Model 1, in which demands in each

period are independent, is zero, and for Model 2 is b/(b + 1). 6

We will derive the mean and variance for w, the demand in Period 2:

E(w) = E(wlv)n(v) [Eq. A-31

The conditional mean on the right-hand side is equal to the mean of the prior

distribution for Period 2, found in Table A-1. The mean of the negative binomial

distribution for v is found just above it.

2!

E = -(a + v)b n(v) ab ab2

S- + - = ab [Eq. A-41(b + 1) b+l b+1

Similarly, by assumption the variance to mean of the prior distribution for Period 2
is b, and this implies, as above, that the variance to mean of the negative binomial

distribution for w, conditional on v, is b + 1. Thus,

Var(wlv) = (a+ v)b [Eq. A-bi

Var(w) = E(w 2 'v)n(v) - [E(w) 2

= {Var(wlv) + [E(wlv)]2}n(v) - (ab)2

S(a+v)b + (a2 +2av+v 2)b2  2

-(ab

Var(w) = ab 1+b + - [Eq. A-61
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TABLE A-2

CORRELATION OF DEMAND IN PERIODS 1 AND 2 AS FUNCTION OF b

VMR
b r- Correlation

Period 1 Period 2 Both

0.1 1.1 1.1 1.2 0.091

0.2 1.2 1.2 1.4 0.164

0.3 1.3 1.4 1.6 0.255

0.4 1.4 1.5 1.9 0.275

0.5 1.5 1.7 2.1 0.316

0.6 1.6 1.8 2.3 0.351

0.7 1.7 2.0 2.5 0.381

0.8 1.8 2.2 2.8 0.406

0.9 1.9 2.3 3.0 0.428

1.0 2.0 2.5 3.3 0.447

2.0 3.0 4.3 5.7 0.555

3.0 4.0 6.3 8.1 0.600

4.0 5.0 8.2 10.6 0.625

5.0 6.0 10.2 13.1 0.640

6.0 7.0 12.1 15.6 0.651

7.0 8.0 14.1 18.1 0.659

8.0 9.0 16. 1 20.6 0.664

9.0 10.0 18.1 23.1 0.669

10.0 11.0 20.1 25.5 0.673

20.0 21.0 40.0 50.5 0.690

30.0 31.0 60.0 75.5 0695

40.0 41,0 80.0 100.5 0.698
50.0 51.0 100.0 125.5 0.700

60.0 61.0 120.0 150.5 0.701

70.0 71.0 140.0 175.5 0.702

80.0 81.0 160.0 200.5 0.703

90.0 91.0 180.0 225.5 0.703

100.0 101.0 200.0 250.5 0.704
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